Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nicotine-induced neuroplasticity counteracts the effect of schizophrenia-linked neuregulin 1 signaling on NMDAR function in the rat hippocampus.

Neuropharmacology 2017 Februrary
A high rate of heavy tobacco smoking among people with schizophrenia has been suggested to reflect self-medication and amelioration of cognitive dysfunction, a core feature of schizophrenia. NMDAR hypofunction is hypothesized to be a mechanism of cognitive dysfunction, and excessive schizophrenia-linked neuregulin 1 (NRG1) signaling through its receptor ErbB4 can suppress NMDAR function by preventing Src-mediated enhancement of NMDAR responses. Here we investigated whether chronic nicotine exposure in rats by subcutaneous injection of nicotine (0.5-1 mg/kg, twice daily for 10-15 days) counteracts the suppressive effect of NRG1β on NMDAR-mediated responses recorded from CA1 pyramidal cells in acute hippocampal slices. We found that NRG1β, which prevents the enhancement of NMDAR responses by the Src-family-kinase-activating peptide pYEEI in naive rats, failed to block the effect of pYEEI in nicotine-exposed rats. In naive rats, NRG1β acts only on GluN2B-NMDARs by blocking their Src-mediated upregulation. Chronic nicotine exposure causes enhanced GluN2B-NMDAR responses via Src upregulation and recruits Fyn for the enhancement of GluN2A-NMDAR responses. NRG1β has no effect on both enhanced basal GluN2B-NMDAR responses and Fyn-mediated enhancement of GluN2A-NMDAR responses. Src-mediated enhancement of GluN2B-NMDAR responses and Fyn-mediated enhancement of GluN2A-NMDAR responses initiate long-term potentiation (LTP) of AMPAR synaptic responses in naive and nicotine-exposed CA1 pyramidal cells, respectively. These results suggest that NRG1β suppresses LTP by blocking Src-mediated enhancement of GluN2B-NMDAR responses, but has no effect on LTP in nicotine-exposed rats. These effects of chronic nicotine exposure may counteract the negative effect of increased NRG1-ErbB4 signaling on the cellular mechanisms of learning and memory in individuals with schizophrenia, and therefore may motivate heavy smoking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app