Add like
Add dislike
Add to saved papers

Synthesis and Characterization of Silver Nanoparticles-Filled Polyethersulfone Membranes for Antibacterial and Anti-Biofouling Application.

BACKGROUND: The membrane processes are interesting and economical techniques for reuse of municipal and industrial wastewater as well as seawater desalination. However their drawbacks can be resumed in the fouling and biofouling due to the deposition and adsorption phenomenon of the components and the development of biofilm on membrane surface. Several studies have focused on the effect of the incorporation of nanoparticles in polymeric membrane matrix on the biofouling properties. Few relevant patents to the topic have been reviewed and cited.

METHODS: Polyethersulfone (PES) membranes filled with silver nanoparticles (AgNPs) were prepared by non-solvent induced phase separation (NIPS) process using polyvinylpyrrolidone (PVP) as additive and N-Methyl-2-pyrrolidone (NMP) as solvent. Dope solution compositions, coagulation bath (CB) compositions, time before immersion in CB and casting speed were systematically studied. Membrane structure was characterized by scanning electron microscopy, contact angle, streaming potential measurement and X-ray diffraction (XRD).

RESULTS: Membrane performance was assessed by pure water permeability, antifouling property, porosity and mechanical property. Silver nanoparticles (AgNPs) were prepared by the chemical reduction of silver nitrate solution with freshly prepared fructose solution, using PVP as capping agent and NaOH as accelerant and settled using acetone. The synthesized AgNPs were firstly characterized by Dynamic light scattering (DLS) technique, UV-visible spectrophotometer and X-ray diffraction spectroscopy (XRD). Then, we have selected a 15% PES mixed with 15% of PVP dope solution to prepare PES-AgNPs blended membranes.

CONCLUSION: All the nanocomposite membranes showed superb antibacterial and anti-biofouling performances, indicating that AgNPs in the PES membranes could be an effective approach to minimize membrane biofouling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app