Add like
Add dislike
Add to saved papers

Controlled Encapsulation of Flower-like Rh-Ni Alloys with MOFs via Tunable Template Dealloying for Enhanced Selective Hydrogenation of Alkyne.

For new composite materials with functional nanoparticles (NPs) embedded in metal organic frameworks (MOFs), rational design and precise control over their architectures are imperative for achieving enhanced performance and novel functions. Especially in catalysis, the activity and selectivity of such composite materials are strongly determined by the encapsulation state and thickness of the MOF shell, which greatly influences the diffusion and adsorption of substance molecules onto the NP surface. In this study, MOF-74(Ni)-encapsulated Rh-Ni hierarchical heterostructures (Rh-Ni@MOF-74(Ni)) were successfully constructed using magnetic Rh-Ni-alloyed nanoflowers (NFs) as a self-sacrificial template. Strikingly, the encapsulation state and thickness of the formed MOF shell were well-tuned via template dealloying by changing the Ni content in the Rh-Ni NFs template. More interestingly, such unique Rh-Ni composites encapsulated with MOFs as catalysts could be magnetically recyclable and exhibited enhanced catalytic performance for the selective hydrogenation of alkynes to cis products, owing to the confinement effect of the MOF shell, as compared to their pristine counterparts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app