Add like
Add dislike
Add to saved papers

Thermally Triggered Phase Separation of Organic Electrolyte-Cellulose Solutions.

ChemSusChem 2016 December 9
Organic electrolyte solutions (OES)-binary mixtures of an ionic liquid (IL) with a neutral polar aprotic co-solvent-are being recognized as excellent candidate solvents for the dissolution, derivatization, and sustainable processing of cellulose. These solutions exhibit the beneficially combined properties of rapid-to-instantaneous cellulose dissolution, raised thermal stability, and reduced viscosity, compared to cellulose solutions in the parent ILs. Herein, we report the reversible, thermally triggered phase separation of cellulose solutions in 1-ethyl-3-methylimidazolium acetate with 1,3-dimethyl-2-imidazolidinone. In these solutions, cellulose drives the process of phase separation, resulting in a lower, IL-rich layer in which the biopolymer is segregated. In turn, the upper phase is enriched in the neutral co-solvent. We show that the temperature of phase separation can be fine-tuned by modification of mole fractions of IL, co-solvent, and cellulose. This finding holds promise for the design of strategies for separation and solvent recycling in cellulose chemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app