Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of Endurance Training on the Skeletal Muscle Nitric Oxide Metabolism in Insulin-Independent Type 2 Diabetic Men-A Pilot Study.

BACKGROUND: Increases in the amount of inducible nitric oxide synthase (iNOS) protein and abnormal production of nitric oxide (NO) in skeletal muscle have been suggested to be associated with peripheral insulin resistance in patients with type 2 diabetes mellitus (T2DM). This pilot study analyzed whether a 3-month endurance training can affect iNOS protein and NO metabolite levels in the vastus lateralis muscle of insulin-independent T2DM men, thereby affecting the patients` glycemic control. Furthermore, serum molecules, which have been shown to activate iNOS protein expression in in vitro experiments, were quantified.

METHODS: Eight overweight/obese T2DM men (years = 61 ± 10) participated in the study. Muscle biopsies and venous blood collections were performed at T1 (6 weeks before training), T2 (1 week before training), and T3 (3 to 4 days after training). Protein contents (iNOS) were determined by Western blotting, nitrite concentrations by chemiluminescence, and serum molecule levels by enzyme-linked immunosorbent assay kits.

RESULTS: The training reduced iNOS protein contents significantly (T2-T3: approximately -31%, P = 0.018). Nitrite concentrations as well as fasting glucose and HbA1c decreased, but not significantly. Serum tumor necrosis factor-α, thiobarbituric acid-reactive substances (lipid peroxidation as an indirect measure of reactive oxygen species), lipopolysaccharide binding protein, interferon-γ, and interleukin-1β showed no significant changes.

CONCLUSIONS: The data indicate that the endurance training performed in the present study can reduce iNOS protein contents in insulin-independent T2DM men. Future studies should identify key molecules in iNOS regulation in vivo and fully clarify whether iNOS downregulation can help improve insulin sensitivity in T2DM patients in the long term.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app