Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of Change in Portal Vein Flow Rates on Hepatic Ablations Created with a Bipolar Radiofrequency Ablation Device.

Radiology 2017 May
Purpose To investigate the effect of change in portal vein flow rates on the size and shape of ablations created by a bipolar radiofrequency (RF) ablation device. Materials and Methods This study was exempt from institutional animal care and use committee review. An in vitro bovine liver model perfused with autologous blood via the portal vein at three flow rates (60, 80, 100 mL/min per 100 g of liver) was used. Four ablations, two bipolar and two monopolar (control probe), were made in each of five livers perfused at each flow rate. Short- and long-axis diameters were measured from gross specimens, and volume and sphericity index were calculated for each ablation. A general linear mixed model accounting for correlation within the liver was used to evaluate the effects of flow on ablations. Analyses were performed by using software. Results There was no significant difference in the size or shape of ablations created by the bipolar device at the different flow rates (P > .05 for all outcomes). The monopolar device demonstrated the expected inverse association between ablation size and change in flow (P < .01 for all outcomes). The mean ± standard deviation of short-axis diameter, long-axis diameter, volume, and sphericity index of the bipolar ablations was 4.3 cm ± 0.1, 4.2 cm ± 0.1, 41.0 cm3 ± 1.8, and 1.1 ± 0.1, respectively. Conclusion Unlike monopolar RF ablation, change in portal vein flow rates does not have a statistically significant effect on the size or shape of ablations created by the bipolar RF ablation device tested. © RSNA, 2016.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app