Add like
Add dislike
Add to saved papers

Pressure-dependent morphology of trihexyl(tetradecyl)phosphonium ionic liquids: A molecular dynamics study.

In the present molecular dynamics study, we investigate the effects of increasing pressure on the structural morphology of trihexyl(tetradecyl)phosphonium bromide (P666,14(+)/Br(-)) and trihexyl(tetradecyl)phosphonium dicyanamide (P666,14(+)/DCA(-)) ionic liquids (ILs). Special attention was paid to how charge and polarity orderings, which are present in the microscopic structure of these ILs at ambient conditions, respond to very high external pressure. The simulated X-ray scattering structure functions, S(q)s, of the two systems reveal that both the characteristic orderings show appreciable responsiveness towards the applied pressure change. At a given pressure, a slight difference between the polarity ordering (PO), charge ordering (CO), and adjacency correlations (AC) for both the systems points towards different microscopic structure of the two ILs due to change in anion. Beyond a certain pressure, we observe emergence of a new low-q peak in the S(q)s of both the systems. The new peak is associated with formation of crystalline order in these systems at higher pressures and the real space length-scale corresponding to the crystalline order lies in between those of polarity- and charge-ordering. Beyond the transition pressure, the crystallinity of both the systems increases with increasing pressure and the corresponding length-scale shifts towards smaller values upon increasing pressure. We also observe that the extent of the usual polarity ordering decreases upon increasing pressure for both the P666,14(+)/Br(-) and P666,14(+)/DCA(-) systems. We demonstrate that the disappearance of the usual polarity peak is due to decreased polar-polar and apolar-apolar correlations and enhanced correlations between the charged and uncharged groups of the ions. This scenario is completely reversed for the components corresponding to the crystalline order, the polar-polar and apolar-apolar correlations are enhanced and polar-apolar correlations are diminished at higher pressure. In addition, the charge ordering peak, which is not so obvious from the total S(q) but from ionic and sub-ionic partial components of it, shifts towards lower q values for P666,14(+)/Br(-). Instead, for the P666,14(+)/DCA(-), at the highest pressure studied the CO peak occurs at a q-value higher than that at the ambient pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app