Add like
Add dislike
Add to saved papers

Markov state model of the two-state behaviour of water.

With the help of a Markov State Model (MSM), two-state behaviour is resolved for two computer models of water in a temperature range from 255 K to room temperature (295 K). The method is first validated for ST2 water, for which the so far strongest evidence for a liquid-liquid phase transition exists. In that case, the results from the MSM can be cross-checked against the radial distribution function g5(r) of the 5th-closest water molecule around a given reference water molecule. The latter is a commonly used local order parameter, which exhibits a bimodal distribution just above the liquid-liquid critical point that represents the low-density form of the liquid (LDL) and the high density liquid. The correlation times and correlation lengths of the corresponding spatial domains are calculated and it is shown that they are connected via a simple diffusion model. Once the approach is established, TIP4P/2005 will be considered, which is the much more realistic representation of real water. The MSM can resolve two-state behavior also in that case, albeit with significantly smaller correlation times and lengths. The population of LDL-like water increases with decreasing temperature, thereby explaining the density maximum at 4 °C along the lines of the two-state model of water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app