Add like
Add dislike
Add to saved papers

Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant.

Graphene/graphene oxide (GO)-based paper is attracting great interest owing to its multiple functionalities. In this study, we successfully synthesized a triblock copolymer by atom transfer radical polymerization method in terms of molecular design. The copolymer was comprised of polydimethylsiloxane (PDMS) and poly(glycidyl methacrylate) (PGMA) segments. To the copolymer, the PDMS segments provided flexible characteristic, and the PGMA segments provided reactive groups and adhesiveness. Because of the above characteristics, the copolymer was used as an adhesive between the adjacent GO nanosheets for fabrication of GO/PDMS-PGMA papers. The papers showed a good combination of high tensile strength and toughness. The tensile strength and toughness of GO/PDMS-PGMA (85/15) paper reached as high as 309 MPa and 6.55 MJ·m-3 , which were 3.4 and 8.2 times higher than that of pure GO paper. Furthermore, the papers also had high dielectric constant, which may enable this kind of material to be used in electronic and engineering fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app