Add like
Add dislike
Add to saved papers

UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds.

Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical conductivity by orders of magnitude without altering the processability of the host material. The addition of graphene also enhanced mesenchymal stem cell (MSC) attachment and proliferation. When electrical stimulation via the composite material was applied, MSC viability was not compromised, and osteogenic markers were upregulated. Using additive fabrication techniques, the material was processed into multilayer 3D scaffolds which supported MSC attachment. These conducting composites with excellent processability and compatibility with MSCs are promising biomaterials to be used as versatile platforms for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app