Add like
Add dislike
Add to saved papers

Understanding charge transport in non-doped pristine and surface passivated hematite (Fe 2 O 3 ) nanorods under front and backside illumination in the context of light induced water splitting.

Hematite (Fe2 O3 ) nanorods on FTO substrates have been proven to be promising photoanodes for solar fuel production but only with high temperature thermal activation which allows diffusion of tin (Sn) ions from FTO, eventually enhancing their conductivity. Hence, there is a trade-off between the conductivity of Fe2 O3 , and the degradation of FTO occurring at high annealing temperatures (>750 °C). Here, we present a comprehensive study on undoped Fe2 O3 nanorods under front and back illumination to find the optimum annealing temperature. Bulk/surface charge transport efficiency analysis demonstrates minimum bulk recombination indicating overall high quality crystalline Fe2 O3 and the preservation of FTO conductivity. Surface recombination is further improved by growing a TiOx overlayer, which improves the photocurrent density from 0.2 mA cm-2 (backside) to 1.2 mA cm-2 under front side and 0.8 mA cm-2 under backside illumination. It is evident from this study that the performance of undoped and unpassivated hematite nanorods is limited by electron transport, whereas that of doped/passivated hematite nanorods is limited by hole transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app