Add like
Add dislike
Add to saved papers

An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene.

Nanoscale 2016 November 4
Graphene with a large specific surface area and high conductivity has a large specific capacitance. However, its volumetric capacitance is usually very low because the restacking of 2D graphene sheets leads to the loss of the large ion-accessible surface area. Here we report squeezable bicontinuous nanoporous nitrogen-doped graphene, which is extremely flexible and can tolerate large volume contraction by mechanical compression without the face-to-face restacking occurring. The compressed nanoporous N-doped graphene with a large ion accessible surface area and high conductivity shows an ultrahigh volumetric capacitance of ∼300 F cm-3 together with excellent cycling stability and high rate performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app