Add like
Add dislike
Add to saved papers

Synchronization failure caused by interplay between noise and network heterogeneity.

Chaos 2016 September
We investigate synchronization in complex networks of noisy phase oscillators. We find that, while too weak a coupling is not sufficient for the whole system to synchronize, too strong a coupling induces a nontrivial type of phase slip among oscillators, resulting in synchronization failure. Thus, an intermediate coupling range for synchronization exists, which becomes narrower when the network is more heterogeneous. Analyses of two noisy oscillators reveal that nontrivial phase slip is a generic phenomenon when noise is present and coupling is strong. Therefore, the low synchronizability of heterogeneous networks can be understood as a result of the difference in effective coupling strength among oscillators with different degrees; oscillators with high degrees tend to undergo phase slip while those with low degrees have weak coupling strengths that are insufficient for synchronization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app