JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dose-dependent short- and long-term effects of ionizing irradiation on neural stem cells in murine hippocampal tissue cultures: neuroprotective potential of resveratrol.

Brain and Behavior 2016 October
INTRODUCTION: Radiation therapy plays an essential role in the treatment of brain tumors, but neurocognitive deficits remain a significant risk, especially in pediatric patients. In recent trials, hippocampal sparing techniques are applied to reduce these adverse effects. Here, we investigate dose-dependent effects of ionizing radiation (IR) on juvenile hippocampal neurogenesis. Additionally, we evaluate the radioprotective potential of resveratrol, a plant polyphenol recognized for its bifunctional tumor-preventive and anticancer effects.

METHODS: Organotypic entorhinal-hippocampal slice cultures from transgenic nestin-CFPnuc C57BL/J6 mice, postnatal days 3-6, were irradiated on a X-ray machine (4.5, 8, 12, and 16 Gy, single doses) after about 2 weeks. Nestin-positive neural stem cells were counted at a confocal live imaging microscope 0, 2, 4, 14, 25, and 42 days after IR. Resveratrol (15 μmol/L) was added 2 hr before and 24 hr after IR. Proliferation and cell death were assessed by BrdU pulse label, 48 hr after and by propidium iodide staining 96 hr after IR. GFAP- and NeuN-positive cells were counted 42 days after IR in cryosectioned immunofluorescence-stained slices.

RESULTS: The observed age-related changes of nestin-positive stem cells in the organotypic slice culture model resembled the reduction of neural stem cells in vivo. IR (4.5-16 Gy) led to a dose-dependent damage of the neural stem cell pool in the dentate gyrus. No recovery was seen within 42 days after doses from 4.5 Gy onward. The decline of nestin-positive cells was paralleled by increased cell death and decreased proliferation. The number of GFAP-positive cells was significantly enhanced. No significant change was detected in the overall NeuN-positive cell population, whereas the number of newborn, NeuN/BrdU double-positive neurons was reduced. Resveratrol treatment reversed the irradiation-induced decline of neural stem cells.

CONCLUSION: The neuroprotective action of resveratrol on irradiated hippocampal tissue warrants further investigation as a possible supplement to hippocampal sparing procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app