Add like
Add dislike
Add to saved papers

Sevoflurane protects against hepatic ischemia/reperfusion injury by modulating microRNA-200c regulation in mice.

This present study was aimed to investigate the molecular mechanisms involved in sevoflurane protection of hepatic ischemia-reperfusion (I/R) injury. Firstly, we investigated the protective effects of sevoflurane against hepatic I/R injury. Biochemical analysis results showed that sevoflurane preconditioning significantly protected against hepatic I/R injury by reducing liver enzymes and improving antioxidant defense markers. We also found that sevoflurane attenuates I/R-induced hepatic cell death, by TUNEL staining, DNA fragmentation ELISA and PARP activity determination. Next, In order to find the molecular mechanism of sevoflurane preconditioning in hepatic I/R injury, we poured our attention to microRNAs regulation. We focused on miR-200c, one of microRNAs which screened from the gene expression omnibus (GEO). Furthermore, a hydrogen peroxide (H2O2)-induced oxidative stress apoptosis model was also established to mimic hepatic I/R injury, the effects of MiR-200c was investigated. We observed that MiR-200c inhibition decreased the H2O2-induced apoptosis of hepatic AML-12 cells. And also, ZEB1 is found as a target gene of miR-200c and is involved in H2O2-induced apoptosis. On the other hand, the in vivo model was established to examine whether sevoflurane protect against hepatic IR injury by downregulating MiR-200c. Together with the biochemical tests and apoptosis detection, results showed that over-expression of miR-200c significantly inhibited the protect effect of sevoflurane in Hepatic IR injury. Summarizing, sevoflurane preconditioning seems to ameliorate hepatic I/R injury in mice, mediated by mechanisms that include microRNA 200c down regulation. However, further more studies need to be carried out to verify this point.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app