Add like
Add dislike
Add to saved papers

Nanoconfinement's Dramatic Impact on Proton Exchange between Glucose and Water.

Glucose nanoconfined by solubilization in water-containing AOT (sodium bis(2-ethylhexyl) sulfosuccinate) reverse micelles has been investigated using1 H NMR. NMR spectra reveal well-defined signals for the glucose hydroxyl groups that suggest slow chemical exchange between them and the water hydroxyl groups. Using the EXSY (ZZ-exchange) method, the chemical exchange rate from water to glucose hydroxyl groups was measured for glucose in reverse micelles as a function of size (water pool diameter of ∼1-5 nm) at 25 °C. The chemical exchange rates observed in the nanoconfined interior are dramatically slower (5-20 times) than those observed for glucose in bulk aqueous solution at the same concentration as the micelle interior. Exchange rate constants are calculated via a mechanism that accounts for these observations, and implications of these results are presented and discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app