Add like
Add dislike
Add to saved papers

Reactivity Indexes of Fullerene and Bismullene Mixed Clusters: How the Intruders Modify the Properties.

In this investigation, the feasibility of functionalizing fullerene and bismullene with Bi and C as intruders is theoretically explored. The systems analyzed are C60-x Bix (with x = 0-10, fullerene-like) and Bi60-y Cy (with y = 0-10, bismullene-like). Optimized geometries, reactivity indexes, and highest occupied molecular orbital to lowest unoccupied molecular orbital (HOMO-LUMO) gaps (for analyzing the potential application of these molecules as materials for solar cells) are reported. The most stable structures of bismullene-like systems have cage geometries. The most stable fullerene-like geometries resemble a cup with bismuth atoms at the edge of the bowl. The presence of intruders increases the electron acceptor power and decreases the electron donor power in most cases. HOMO-LUMO gaps indicate that bismullene-like clusters represent better candidates for building solar cells than fullerene-like clusters. This information could be useful for future experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app