Add like
Add dislike
Add to saved papers

Linear Absorption Spectra from Explicitly Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

We report an explicitly time-dependent approach to the generation of linear absorption spectra for molecular systems within the framework of equation-of-motion (EOM) coupled-cluster (CC) theory. While most time-dependent CC approaches consider the perturbation and time-evolution of a CC wave function, the present work considers the time-evolution of a CC dipole function. The dipole function formalism introduces no approximations and requires the evolution of only one time-dependent quantity, either the left or right dipole function. This time-dependent framework can be used to compute linear absorption spectra for molecules with a high density of states over a broad spectral range, a case for which conventional frequency-domain computations may become impractical. We validate the approach by comparing absorption spectra for small molecules computed at EOM second-order approximate CC (CC2) and time-dependent EOM-CC2 (TD-EOM-CC2) levels of theory. TD-EOM-CC2 computations are also used to predict extreme ultraviolet absorption spectra for third-row ions that are in reasonable agreement with experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app