COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Incorporation of Hard and Soft Protein-Protein Interactions into Models for Crowding Effects in Binary and Ternary Protein Mixtures. Comparison of Approximate Analytical Solutions with Numerical Simulation.

In order to better understand how nonspecific interactions between solutes can modulate specific biochemical reactions taking place in complex media, we introduce a simplified model aimed at elucidating general principles. In this model, solutions containing two or three species of interacting globular proteins are modeled as a fluid of spherical particles interacting through square well potentials that qualitatively capture both steric hard core repulsion and longer-ranged attraction or repulsion. The excess chemical potential, or free energy of solvation, of each particle species is calculated as a function of species concentrations, particle radii, and square well interaction range and depth. The results of analytical models incorporating two-body and three-body interactions are compared with the estimates of free energy obtained via Widom insertion into simulated equilibrium square-well fluids. The analytical models agree well with results of numeric simulations carried out for a variety of model parameters and fluid compositions up to a total particle volume fraction of ca. 0.2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app