Add like
Add dislike
Add to saved papers

Enhanced π-Back-Donation as a Way to Higher Coordination Numbers in d 10 [M(NHC) n ] Complexes: A DFT Study.

We aim to understand the electronic factors determining the stability and coordination number of d10 transition-metal complexes bearing N-heterocyclic carbene (NHC) ligands, with a particular emphasis on higher coordinated species. In this DFT study on the formation and bonding of Group 9-12 d10 [M(NHC)n ] (n=1-4) complexes, we found that all metals form very stable [M(NHC)2 ] complexes, but further coordination depends on the specific interplay of 1) the interaction energy (ΔEint ) between the [M(NHC)n-1 ] (n=2-4) fragment and the incoming NHC ligand, and 2) the strain energy (ΔEstrain ) associated with bending of the linear NHC-M-NHC arrangement. The key observation is that ΔEstrain , which is an antagonist for higher coordination numbers, can significantly be lowered by M→NHC π*-back-donation. This leads to favorable thermodynamics for n=3-4 for highly electrophilic metals in our study, and thus presents a general design motif to achieve coordination numbers beyond two. The scope of our findings extends beyond the NHC model systems and has wider implications for the synthesis of d10 [MLn ] complexes and their catalytic activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app