JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SOCS1 inhibits migration and invasion of prostate cancer cells, attenuates tumor growth and modulates the tumor stroma.

BACKGROUND: The suppressor of cytokine signaling 1 (SOCS1) gene is repressed in prostate cancer (PCa) by epigenetic silencing and microRNA miR30d. Increased expression of the SOCS1-targeting miR30d correlates with higher biochemical recurrence, suggesting a tumor suppressor role of SOCS1 in PCa, but the underlying mechanisms are unclear. We have shown that SOCS1 inhibits MET receptor kinase signaling, a key oncogenic pathway in cancer progression. Here we evaluated the role of SOCS1 in attenuating MET signaling in PCa cells and tumor growth in vivo.

METHODS: MET-overexpressing human DU145 and PC3 PCa cell lines were stably transduced with SOCS1, and their growth, migration and invasion of collagen matrix were evaluated in vitro. Cells expressing SOCS1 or the control vector were evaluated for tumor growth in NOD.scid.gamma mice as xenograft or orthotopic tumors.

RESULTS: HGF-induced MET signaling was attenuated in SOCS1-expressing DU145 and PC3 cells. Compared with vector control cells, SOCS1-expressing cells showed reduced proliferation and impaired migration following HGF stimulation. DU145 and PC3 cells showed marked ability to invade the collagen matrix following HGF stimulation and this was attenuated by SOCS1. As xenografts, SOCS1-expressing PCa cells showed significantly reduced tumor growth compared with vector control cells. In the orthotopic tumor model, SOCS1 reduced the growth of primary tumors and metastatic spread. Intriguingly, the SOCS1-expressing DU145 and PC3 tumors showed increased collagen deposition, associated with increased frequency of myofibroblasts.

CONCLUSIONS: Our findings support the tumor suppressor role of SOCS1 in PCa and suggest that attenuation of MET signaling is one of the underlying mechanisms. SOCS1 in PCa cells also appears to prevent the tumor-promoting functions of cancer-associated fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app