Add like
Add dislike
Add to saved papers

Highly sensitive, direct and real-time detection of silver nanowires by using a quartz crystal microbalance.

Nanotechnology 2016 November 26
For several decades, silver nanomaterials (AgNMs) have been used in various research areas and commercial products. Among the many AgNMs, silver nanowires (AgNWs) are one of the mostly widely used nanomaterials due to their high electrical and thermal conductivity. However, recent studies have investigated the toxicity of AgNWs. For this reason, it is necessary to develop a successful detection method of AgNWs for protecting human health. In this study, label-free, highly sensitive, direct, and real-time detection of AgNWs is performed for the first time. The detection mechanism is based on the resonance frequency shift upon the mass change from the hybridization between the probe DNA on the electrode and the linker DNA attached on AgNWs. The frequency shift is measured by using a quartz crystal microbalance. We are able to detect 1 ng ml-1 of AgNWs in deionized water in real-time. Moreover, our detection method can selectively detect AgNWs among other types of one-dimensional nanomaterials and can also be applied to detection in drinking water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app