Add like
Add dislike
Add to saved papers

In vivo biocompatibility of p(HPMAm-lac)-PEG hydrogels hybridized with hyaluronan.

The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the fields of tissue engineering and regenerative medicine. Ultrasonography, used as a method to study hydrogel gelation and residence time in vivo, showed that, upon injection, the biomaterial efficiently formed a hydrogel by simultaneous thermal gelation and Michael Addition cross-linking forming a viscoelastic spherical depot at the injection site. The residence time in vivo (20 days) was found to be shorter than that observed in vitro (32 days), indicating that the injected hydrogel was resorbed not only by chemical hydrolysis but also by cellular metabolism and/or enzymatic activity. Systemic biocompatibility was tested by analysing routine haematological parameters at different time-points (7, 14 and 21 days after administration) and histology of the main organs, including the haematopoietic system. No statistically significant difference between parameters of the saline-treated group and those of the hydrogel-treated group was found. Importantly, a time-dependent decrease of important pro-inflammatory cytokines (TREM1 (Triggering Receptor Expressed on Myeloid cells-1), tumour necrosis factor-α and interleukin-1β) in cultured bone marrow cells extracted from hydrogel treated mice was observed, possibly correlated to the anti-inflammatory effect of hyaluronic acid released in time as hydrogel degraded. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app