JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel.

ChemSusChem 2016 November 24
Two ternary sol-gel matrices, an octyltriethoxysilane-based aliphatic matrix and a phenyltriethoxysilane (PTEOS)-based aromatic matrix, were used to immobilize a methanol-stable variant of lipase from Geobacillus stearothermophilus T6 for the synthesis of biodiesel from waste oil. Superior thermal stability of the mutant versus the wildtype in methanol was confirmed by intrinsic protein fluorescence measurements. The influence of skim milk and soluble E. coli lysate proteins as bulking and stabilizing agents in conjunction with sol-gel entrapment were investigated. E. coli lysate proteins were better stabilizing agents of the purified lipase mutant than skim milk, as evidenced by reverse engineering of the aromatic-based system. This was also shown for commercial Candida antarctica lipase B (CaLB) and Thermomyces lanuginosus lipase (TLL). Uniform, dense, and nonaggregated particles imaged by scanning electron microscopy and a small particle size of 13 μm pertaining to the system comprising PTEOS and E. coli lysate proteins correlated well with high esterification activity. Combining protein and immobilization engineering resulted in a durable biocatalyst with efficient recycling ability and high biodiesel conversion rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app