JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Dispersion Forces, Disproportionation, and Stable High-Valent Late Transition Metal Alkyls.

Angewandte Chemie 2016 November 15
The transition metal tetra- and trinorbornyl bromide complexes, M(nor)4 (M=Fe, Co, Ni) and Ni(nor)3 Br (nor=1-bicyclo[2.2.1]hept-1-yl) and their homolytic fragmentations were studied computationally using hybrid density functional theory (DFT) at the B3PW91 and B3PW91-D3 dispersion-corrected levels. Experimental structures were well replicated; the dispersion correction resulted in shortened M-C bond lengths for the stable complexes, and it was found that Fe(nor)4 receives a remarkable 45.9 kcal mol-1 stabilization from the dispersion effects whereas the tetragonalized Co(nor)4 shows stabilization of 38.3 kcal mol-1 . Ni(nor)4 was calculated to be highly tetragonalized with long Ni-C bonds, providing a rationale for its current synthetic inaccessibility. Isodesmic exchange evaluation for Fe(nor)4 confirmed that dispersion force attraction between norbornyl substituents is fundamental to the stability of these species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app