Add like
Add dislike
Add to saved papers

Effects of electroacupuncture intervention on expression of cyclooxygenase 2 and microglia in spinal cord in rat model of neuropathic pain.

OBJECTIVE: To investigate the effect of electroacupuncture (EA) treatment on the expression of cyclooxygenase (COX) 2 and microglia in spinal cord by using rat model of neuropathic pain, and to probe into the relationship between COX 2 and microglia.

METHODS: The rats were randomly divided into 6 groups, including normal control group, model group, sham group, EA 1 group (distant acupoints + local acupoints), EA 2 group (local acupoints), and EA 3 group (distant acupoints). Thermal withdrawal latencies were evaluated at 1 day preoperatively and 3, 5 and 7 days postoperatively. At 7 days postoperatively, the spinal COX 2 mRNA was detected by reverse-transcription polymerase chain reaction. Double immunofluorescent staining technology was applied to screen and verify the relationship between altered COX 2 and microglia.

RESULTS: Compared with the model group, thermal withdrawal latencies increased after EA treatment (P<0.01). The expressions of COX 2 mRNA were up-regulated in spinal cord of rat on day 7 after surgery (P<0.05). Compared with the model group, EA stimulation (EA 1 and EA 2 groups) reversed the up-regulation of COX 2 mRNA expression (P<0.05). EA 1 and EA 2 groups might have better treatment effect compared with the EA 3 group. Fluorescent images displayed COX 2 and microglia expressed at common areas.

CONCLUSIONS: EA was effective in analgesic and anti-inflammatory. EA has decreased the expression of spinal COX 2 mRNA in the trend of the therapeutic effect of "distant acupoints + local acupoints", and "local acupoints" intervention may be superior to that of "distant acupoints" intervention. Microglia may be related to the formation of COX 2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app