Add like
Add dislike
Add to saved papers

Novel magnetic relaxation nanosensors: an unparalleled "spin" on influenza diagnosis.

Nanoscale 2016 December 2
Rapid detection and diagnosis of pathogenic strains of influenza is necessary for expedited treatment and quicker resolutions to the ever-rising flu pandemics. Considering this, we propose the development of novel magnetic relaxation nanosensors (MRnS) for the rapid detection of influenza through targeted binding with hemagglutinin. 2,6- and 2,3-sialic acid ligands and entry blocker peptides are conjugated to iron oxide nanoparticles to create functional MRnS. Positive detection of various hemagglutinin variants (H1 and H5) is possible with protein concentrations as little as 1.0 nM. Most importantly, detection using functional MRnS is achieved within minutes and differentiates between influenza subtypes. This specificity allows mixtures of MRnS to screen for multiple pathogens at once, discarding the need to conduct multiple individual tests. Current methods used to diagnose influenza, such as RT-PCR and viral culturing, while largely effective, are complex, time-consuming and costly. As well, they are not as sensitive or specific, and have been known to produce false-positive results. In contrast to these methods, targeted MRnS are robust, point-of-care diagnostic tools featuring simple, rapid and low-cost procedures. These qualities, as well as high sensitivity and specificity, and low turnaround times, make a strong case for the diagnostic application of MRnS in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app