Add like
Add dislike
Add to saved papers

Comparison of maternal isocaloric high carbohydrate and high fat diets on osteogenic and adipogenic genes expression in adolescent mice offspring.

BACKGROUND: Maternal high fat/high calorie diet leads to adiposity and bone fracture in offspring. However, the effects of macronutrient distribution in maternal isocaloric diet have not been studied. The present study was designed to test the hypothesis that maternal isocaloric pair-fed high-carbohydrate diet will increase osteoblastic and decrease osteoclastic and adipogenic gene expression compared with high-fat diet in adolescent mice offspring.

METHODS: Virgin female C57BL/6 mice were impregnated and fed either the AIN 93G isocaloric pair-fed high-carbohydrate (LF-HCD) or a high fat (HF-LCD) diet from the time of vaginal plug confirmation until the offspring was weaned.

RESULTS: After adjusting for the sex of offspring, osteoprotegrin (OPG) and Ctnnb1 (beta-catenin) genes expression were significantly reduced by 98 % and 97 % in the bone of offspring born from the HF-LCD compared with the LF-HCD-fed mothers (p < 0.001 and p < 0.001, respectively). Peroxisome proliferator-activated receptor gamma-2 (PPAR γ2) gene expression in the bone of offspring born from the HF-LCD was 7.1-folds higher than the LF-HCD-fed mothers (p = 0.004). In the retroperitoneal fat mass of offspring born from HF-LCD, AdipoQ and LPL genes expression were respectively up-regulated 15.8 and 4.2-folds compared with the LF-HCD-fed mothers (p < 0.001 and p = 0.03, respectively).

CONCLUSIONS: Maternal isocaloric pair-fed high-carbohydrate diet enhances osteoblastogenesis and inhibits adipogenesis compared with high-fat diet in adolescent mice offspring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app