Add like
Add dislike
Add to saved papers

[Effect of low-selenium diet on expressions of CCR7, CD206 and CD163 in the liver and kidney of rats].

OBJECTIVE: To investigate the effect of low-selenium diet on the liver and kidneys of rats and explore the role of macrophage polarization into M1 and M2 phenotypes in liver and kidney injuries.

METHODS: Twenty-four rats (12 female and 12 male) were randomly divided into control group and low-selenium group and fed with normal chow (dietary selenium of 0.18 mg/kg) and low-selenium diet (dietary selenium of 0.02 mg/kg) for 109 days. After the feeding, the rats were sacrificed for HE staining to observe liver and kidney pathologies, and immunohistochemistry was performed for analyzing CCR7, CD206, CD163-positive cell numbers in the liver and kidneys.

RESULTS: The rats in low-selenium group showed severer fibrosis in the liver and kidney than the control group. In either male or female rats in low-selenium group, CCR7 and CD206 expressions in the liver were comparable with those in control group, but CD163 expression was lower than that in the control group (P<0.05 for both female and male rats). In the kidney, the proximal tubule showed a slightly higher while the distal tubule showed a slightly lower CCR7 expression in low selenium group than in the control group (P>0.05). In low-selenium group, a significantly lower CD163 expression in the distal tubule and a significantly higher CD206 expression in the proximal tubule were noted as compared with the control group (P<0.05 in both female and male rats). Compared with the control rats, the male rats in low-selenium group, but not the female rats, showed a significantly lower CD163 expression in the proximal tubule of the kidney (P<0.05); the female but not the male rats in low-selenium group show a higher CD206 expression in the distal tubule (P<0.05).

CONCLUSION: Low-selenium diet can cause liver and kidney fibrosis in rats and may inhibit macrophage activation into the M2 phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app