Add like
Add dislike
Add to saved papers

Conditional tenomodulin overexpression favors tenogenic lineage differentiation of transgenic mouse derived cells.

Gene 2017 January 21
Tenomodulin (TNMD) is a type II transmembrane protein that is widely expressed in a variety of avascular connective tissues and fat tissue. Its function remains largely unknown except for a marker for mature tenocytes. This study reports the generation of tetracycline (Tet)-on driven conditional TNMD overexpressing mice and thus to provide a tool for systemic investigation of its role in regulating functions of various tissues. The current study focuses on in vitro comparison of tenogenic differentiation potentials induced by doxycycline (Dox) treatment among bone marrow derived stem cells (BMSCs), adipose derived stem cells (ASCs), dermal fibroblasts (DFs) and tenocytes (TCs) of the same transgenic mice. The results showed that BMSCs exhibited the best tenogenic potential than other three cell types (p<0.05 for majority of markers), whereas ASCs and DFs revealed similar potentials (p>0.05 for majority of markers). TCs were found the least capable of being induced for tenogenic gene expression. In addition, TNMD overexpression also significantly inhibited the differentiation towards osteogenic and chondrogenic lineages in both BMSCs and ASCs (p<0.05). However, the inhibition of adipogenic differentiation was not observed in ASCs (p>0.05), suggesting different gene regulation mechanisms may involve in different tissue types and thus leading to different functions, which is likely to be revealed with a transgenic mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app