JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A model for the 77K excited state dynamics in Chlamydomonas reinhardtii in state 1 and state 2.

The regulatory mechanism of state transitions was studied in Chlamydomonas reinhardtii (C.r.) wild type (WT) as well as mutant strains deficient in the photosystem I (PSI) or the photosystem II (PSII) core. Time-resolved fluorescence measurements were obtained on instantly frozen cells incubated beforehand in the dark in aerobic or anaerobic conditions which leads to state 1 (S1) or state 2 (S2). WT data contains information on the light-harvesting complex (LHC) connected to PSI and PSII. The mutants' data contain information on either LHCII-LHCI-PSI or LHCII-PSII, plus information on LHC antennas devoid of a PS core. In a simultaneous analysis of the data from all strains under S1 or S2 conditions a unified model for the excited state dynamics at 77K was created. This yielded the completely resolved LHCII-LHCI-PSI and LHCII-PSII dynamics and quantified the state transitions. In WT cells the fraction of light absorbed by LHCII connected to PSII decreases from 45% in S1 to 29% in S2, while it increases from 0% to 16% for LHCII connected to PSI. Thus (16/45=) 36% of all LHCII is involved in the state transition. In the mutant strains deficient in the PSI core, the red most species peaking at 716nm disappears completely, indicating that this far red Chl pigment is located in the PSI core. In the mutant strain deficient in the PSII core, red shifted species with maxima at 684 and 686nm appear in the LHCII antenna. LHCII-684 is quenched and decays with a rate of (310ps)-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app