Add like
Add dislike
Add to saved papers

Multi-responsive, tough and reversible hydrogels with tunable swelling property.

A novel family of multi-responsive, tough, and reversible hydrogels were prepared by the combination of dipole-dipole interaction, hydrogen bonding interaction and slightly chemical cross-linking, using monomers of acrylonitrile, sodium allylsulfonate and itaconic acid. Reversible gel-sol transition was achieved by the flexible conversion of the dipole-dipole interactions between acrylonitrile-acrylonitrile and acrylonitrile-sodium thiocyanate, and the hydrogels could freely form desired shapes. The dipole-dipole and hydrogen bonding interactions improved the mechanical strength of the hydrogels with a compressive stress of 2.38MPa. Meanwhile, the hydrogels sustained cyclic compressive tests with 60% strain, and exhibited excellent elastic property. The hydrogels were sensitive to pH and ionic strength, and could keep their perfect spherical structures without any obvious cracks even after immersing in strong ionic strength (or pH) solution for several reversible cycles. Furthermore, the hydrogels were recycled for environmental pollution remediation, and showed great potential to be applied in water treatments and other related fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app