Add like
Add dislike
Add to saved papers

Transcriptional and cellular effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in experimentally exposed mussels, Mytilus galloprovincialis.

Aquatic Toxicology 2016 November
The aim of the present investigation was to provide new insights on accumulation and possible adverse effects of various non-steroidal anti-inflammatory drugs (NSAIDs) in mussels, Mytilus galloprovincialis, exposed to an environmentally realistic concentration (0.5μg/L) of individual compounds, Acetaminophen (AMP), Diclofenac (DIC), Ibuprofen (IBU), Ketoprofen (KET) or Nimesulide (NIM). The measurement of drugs in mussel tissues was integrated with both functional alterations at cellular level and transcriptomic responses. Results indicated the capability of mussels to accumulate DIC and NIM, while AMP, IBU and KET were always below detection limit. A large panel of ecotoxicological biomarkers revealed the early onset of alterations induced by tested NSAIDs on immunological responses, lipid metabolism and DNA integrity. The gene transcription analysis through DNA microarrays, supported cellular biomarker results, with clear modulation of a large number of genes involved in the arachidonic acid and lipid metabolism, immune responses, cell cycle and DNA repair. The overall results indicated an ecotoxicological concern for pharmaceuticals in M. galloprovincialis, with transcriptional responses appearing as sensitive exposure biomarkers at low levels of exposure: such changes, however, are not always paralleled by corresponding functional effects, suggesting caution when interpreting observed effects in terms of perturbed cellular pathways. Fascinating similarities can also be proposed in the mode of action of NSAIDs between bivalves and vertebrate species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app