Add like
Add dislike
Add to saved papers

Unexpected Trend in Stability of Xe-F Compounds under Pressure Driven by Xe-Xe Covalent Bonds.

Xenon difluoride is the first and the most stable of hundreds of noble-gas (Ng) compounds. These compounds reveal the rich chemistry of Ng's. No stable compound that contains a Ng-Ng bond has been reported previously. Recent experiments have shown intriguing behaviors of this exemplar compound under high pressure, including increased coordination numbers and an insulator-to-metal transition. None of the behaviors can be explained by electronic-structure calculations with fixed stoichiometry. We therefore conducted a structure search of xenon-fluorine compounds with various stoichiometries and studied their stabilities under pressure using first-principles calculations. Our results revealed, unexpectedly, that pressure stabilizes xenon-fluorine compounds selectively, including xenon tetrafluoride, xenon hexafluoride, and the xenon-rich compound Xe2 F. Xenon difluoride becomes unstable above 81 GPa and yields metallic products. These compounds contain xenon-xenon covalent bonds and may form intercalated graphitic xenon lattices, which stabilize xenon-rich compounds and promote the decomposition of xenon difluoride.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app