Add like
Add dislike
Add to saved papers

ATP/pH Dual Responsive Nanoparticle with d-[des-Arg 10 ]Kallidin Mediated Efficient In Vivo Targeting Drug Delivery.

Small 2017 January
Inflammation has been reported as one significant hallmark of breast cancer in relation to tumor development, metastasis, and invasion. The bradykinin receptor 1 (B1R) is highly expressed on inflammatory breast tumor cells thus providing a promising targeting site for tumor recognition and sufficient receptor mediated endocytosis. In this study, the authors evaluate the targeting efficiency of l-form and d-form [des-Arg10 ]kallidin both in vitro and in vivo. To further improve the drug delivery efficiency, the authors establish a dandelion like nanoparticle by combining the polymeric drug conjugates and aptamer complex together. The doxorubicin conjugated polymer is complexed with adenosine-5'-triphosphate (ATP) sensitive hybridized aptamer in self-assembly process by intercalating into the double strand scaffolds. The acid labile conjugating bond and ATP sensitive aptamer endow the nanoparticle with dual responsiveness to intracellular milieu, thus triggering a quick drug release in tumor cells. Remarkable therapeutic effects and tuned in vivo pharmacokinetics profiles are shown by the aptamer complexed drug conjugates nanoparticle with B1R active targeting modification. Therefore the strategies of B1R targeting and ATP/pH dual-responsiveness nanoparticle help achieve enhanced drug accumulation within tumor cells and efficient chemotherapy for breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app