EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition.

In this study, we examined the phase locking value (PLV) for seizure prediction, particularly, in the gamma frequency band. We prepared simulation data and 65 clinical cases of seizure. In addition, various filtering algorithms including bandpass filtering, empirical mode decomposition, multivariate empirical mode decomposition and noise-assisted multivariate empirical mode decomposition (NA-MEMD) were used to decompose spectral components from the data. Moreover, in the case of clinical data, the PLVs were used to classify between interictal and preictal stages using a support vector machine. The highest PLV was achieved with NA-MEMD with 0-dB white noise algorithm (0.9988), which exhibited statistically significant differences compared to other filtering algorithms. Moreover, the classification rate was the highest for the NA-MEMD with 0-dB algorithm (83.17%). In terms of frequency components, examining the gamma band resulted in the highest classification rates for all algorithms, compared to other frequency bands such as theta, alpha, and beta bands. We found that PLVs calculated with the NA-MEMD algorithm could be used as a potential biological marker for seizure prediction. Moreover, the gamma frequency band was useful for discriminating between interictal and preictal stages.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app