Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mathematical model of the atrioventricular nodal double response tachycardia and double-fire pathology.

A proposed model consisting of two coupled models (Hodgkin-Huxley and Yanagihara-Noma-Irisawa model) is considered as a description of the heart's action potential. System of ordinary differential equations is used to recreate pathological behaviour in the conducting heart's system such as double fire and the most common tachycardia: atrioventricular nodal reentrant tachycardia (AVNRT). Part of the population has an abnormal accessory pathways: fast and slow (Fujiki, 2008). These pathways in the atrioventricular node (AV node) are anatomical and functional contributions of supraventricular tachycardia. However, the appearance of two pathways in the AV node may be a contribution of arrhythmia, which is caused by coexistent conduction by two pathways (called double fire). The difference in the conduction time between these pathways is the most important factor. This is the reason to introduce three types of couplings and delay to our system in order to reproduce various types of the AVNRT. In our research, introducing the feedback loops and couplings entails the creation of waves which can correspond to the re-entry waves occurring in the AVNRT. Our main aim is to study solutions of the given equations and take into consideration the influence of feedback and delays which occur in these pathological modes. We also present stability analysis for both components, that is Hodgkin-Huxley and Yanagihara-Noma-Irisawa models, as well as for the final double-fire model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app