Add like
Add dislike
Add to saved papers

Docking and QSAR Studies of Aryl-valproic Acid Derivatives to Identify Antiproliferative Agents Targeting the HDAC8.

BACKGROUND: Histone deacetylase 8 (HDAC8) is a plausible target for the development of novel anticancer drugs using a metal-chelating group and hydrophobic moieties as pharmacophores. It is known that valproic acid (administered as its salt, sodium valproate; VPANa+) is an HDAC8 inhibitor characterized by its hydrophobic chains. Nevertheless, VPA is hepatotoxic and VPA analogues might be explored for less hepatotoxic antiproliferative compounds.

METHOD: In this work, docking and QSAR studies of 500 aryl-VPA derivatives as possible HDAC8 inhibitors were performed in order to explore and select potential anti-proliferative compounds. Docking results identified π-π, hydrogen bonds as the most important noncovalent interactions between HDAC8 (PDB: 3F07) and the ligands tested, whereas Belm4 was the best QSAR descriptor and classified as a 2D-BCUT descriptor.

RESULT: Based on theoretical studies, compound DAVP042 was synthesized and evaluated in vitro for its antiproliferative activities on several cancer cell lines (A549-lung, MCF-7-breast, HCT116-colon and U937- lymphoid tissue) in comparison to VPA, as well as for its inhibitory activity on HDAC8 using in vitro models. DAVP042 demonstrated to have antiproliferative activity on all cancer cell lines employed, not only suggesting that this compound should be further studied, but also demonstrating that the methodology herein employed is appropriated to identify new therapeutic candidates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app