Add like
Add dislike
Add to saved papers

Energetics of native defects in anatase TiO 2 : a hybrid density functional study.

The energetics and electronic structures of native defects in anatase TiO2 are comprehensively studied using hybrid density functional calculations. We demonstrate that oxygen vacancies (VO ) and titanium interstitials (Tii ) act as shallow donors, and can form at substantial concentrations, giving rise to free electrons with carrier densities from 1011 to 1019 cm-3 under oxygen-rich and oxygen-poor conditions, respectively. The titanium vacancies (VTi ), identified as deep acceptors and induced hole carriers, are incapable of fully compensating for the free electrons originating from the donor-type defects at any oxygen chemical potential. Even under extreme oxygen-rich conditions, the Fermi level, which is determined from the charge neutrality condition among charge defects, electron and hole carriers, is located 2.34 eV above the valence band maximum, indicating that p-type conductivity can never be realized under any growth conditions without external doping. This is consistent with common observations of intrinsic n-type conductivity of TiO2 . At a typical annealing temperature and under a typical oxygen partial pressure, the carrier concentration is found to be approximately 5 × 1013 cm-3 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app