JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase.

Decreased thiamine and reduced activity of thiamine diphosphate (ThDP)-dependent 2-oxoglutarate dehydrogenase (OGDH) cause neurodegeneration. We hypothesized on concerted cell-specific regulation of the thiamine metabolism and ThDP-dependent reactions. We identified a smaller thiamine pool, a lower expression of the mitochondrial ThDP transporter, and a higher expression of OGDH in rat astrocytes versus neuroblastoma N2A. According to the data, the astrocytic OGDH may be up-regulated by an increase in intracellular ThDP, while the neuroblastomal OGDH functions at full ThDP saturation. Indeed, in rat astrocytes and brain cortex, OGDH inhibition by succinyl phosphonate (SP) enlarged the pool of thiamine compounds. Increased ThDP level in response to the OGDH inhibition presumably up-regulated the enzyme to compensate for a decrease in reducing power which occurred in SP-treated astrocytes. Under the same SP treatment of N2A cells, their thiamine pool and reducing power were unchanged, although SP action was evident from accumulation of glutamate. The presented data indicate that functional interplay between OGDH, other proteins of the tricarbocylic acid cycle and proteins of thiamine metabolism is an important determinant of physiology-specific networks and their homeostatic mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app