JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Peripheral neuropathy with microtubule inhibitor containing antibody drug conjugates: Challenges and perspectives in translatability from nonclinical toxicology studies to the clinic.

Antibody drug conjugates (ADC) consist of potent cytotoxic drugs conjugated to antibodies via chemical linkers, which enables specific targeting of tumor cells while reducing systemic exposure to the cytotoxic drug and improving the therapeutic window. The valine citrulline monomethyl auristatin E (vcMMAE, conventional linker-drug) ADC platform has shown promising clinical activity in several cancers, but peripheral neuropathy (PN) is a frequent adverse event leading to treatment discontinuation and dose reduction. This was not predicted based on nonclinical toxicology studies in monkeys or rats treated with vcMMAE ADCs. We evaluated four hypotheses for the lack of translatability of PN with vcMMAE ADCs: 1) species differences in exposure; 2) insensitivity of animal models; 3) species differences in target biology and other vcMMAE ADC properties in peripheral nerves and 4) increased susceptibility of patient population. The result of this hypothesis-based approach identified opportunities to improve the predictivity of PN in our animal models by increasing duration of exposure and adding an expanded neurohistopathology assessment of peripheral nerves. The utility of a predictive animal model would be to provide possible mitigation strategies in the clinic with vcMMAE ADCs and help to screen the next generation microtubule inhibitor (MTI) ADCs for reduced PN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app