Add like
Add dislike
Add to saved papers

Dual color emitting Eu doped strontium orthosilicate phosphors synthesized by bio-template assisted ultrasound for solid state lightning and display applications.

A novel Sr2 SiO4 :Eu (1-5mol %) superstructures (SS) were synthesized using bio-sacrificial A.V. gel assisted ultrasound method. Powder X-ray diffraction patterns confirmed the presence of both α and β phase formation. It was evident that the morphological growth was highly reliant on A.V. gel concentration, sonication time, pH and sonication power. The formation mechanisms for different hierarchical SS were proposed. From diffuse reflectance spectra, the energy band gap was estimated and found to be ∼4.70-5.11eV. The photoluminescence emission spectra for the excitation at 392nm, shows characteristic emission peaks at 593, 613, 654 and 702nm which were attributed to 5 D0 →7 F0 , 7 F1, 7 F2 and 7 F3 transitions of Eu3+ ions respectively. Conversely, when the samples were subjected to the heat treatment at 850°C for 3h under argon atmosphere, display an intense broad emission peak with two de-convoluted peaks at 490 and 550nm due to 4f6 5d1 →4f1 (8 S7/2 ) transitions of Eu2+ ions. The concentration quenching phenomenon was discussed which attributes to energy transfer, electron-phonon coupling and ion-ion interaction. The Judd-Ofelt intensity parameters and other radiative properties were estimated by using emission spectra. The CIE chromaticity coordinate values of Sr2 SiO4 :Eu2+ and Eu3+ nanophosphors were located in green and red regions respectively. The calculated CCT and CRI values specify that the present phosphor can be fairly useful for both green and red components of white LED's. Luminescence decay and quantum yield suggest the suitability of this phosphor as an efficient luminescent medium for light emitting diodes. Overall, the results elucidated a rapid, environmentally benign, cost-effective and convenient method for Sr2 SiO4 :Eu3+ synthesis and for the possible applications such as solid state lighting and display devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app