Add like
Add dislike
Add to saved papers

Covalent immobilization of tyrosinase onto cyanuric chloride crosslinked amine-functionalized superparamagnetic nanoparticles: Synthesis and characterization of the recyclable nanobiocatalyst.

Magnetic nanoparticles (MNPs) were synthesized using the chemical co-precipitation method. Then the nanoparticles were coated with silica via hydrolysis of tetraethyl orthosilicate using the sol-gel process. The silica coated magnetic nanoparticles were amine-functionalized with 3-aminopropyltriethoxysilane/ethanol solution. Subsequently, the nanoparticles were added to a solution of cyanuric chloride in tetrahydrofuran to synthesize cyanuric chloride-functionalized magnetic nanoparticles (Cy-MNPs). For covalent immobilization of tyrosinase, Cy-MNPs were added to a freshly prepared tyrosinase solution and the mixture was shaken. The FTIR spectra, as well as EDX, analysis proved the covalent immobilization of tyrosinase on the nanoparticles. The magnetic properties of tyrosinase-immobilized magnetic nanoparticles (tyrosinase-MNPs) were specified by VSM analysis. TEM images indicated that the most of the tyrosinase-MNPs had a semi-spherical shape with an average size of 17nm. The synthesized nanoparticles had a high loading capacity of 194mg tyrosinase/g nanoparticles with an immobilization yield of 69%. The optimum condition for both free and immobilized tyrosinase was found at pH 7.0 and 35°C. The immobilized enzyme was active after treatment of the particles at various pHs and temperatures for 100min. In addition, reusability of the immobilized enzyme was investigated and it was proved its suitability to be used for more than 7 cycles. Also, tyrosinase-MNPs remained about 70% of its initial activity after storing at 4°C for 40days. This nanobiocatalyst with interesting properties is promising for practical application in wastewater treatment and biosensor development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app