Add like
Add dislike
Add to saved papers

Bioavailability of aflatoxin B 1 and ochratoxin A, but not fumonisin B 1 or deoxynivalenol, is increased in starch-induced low ruminal pH in nonlactating dairy cows.

High-production dairy and beef systems require diets rich in starch. This practice may induce ruminal acidosis and also increase exposure to mycotoxins because starches in starch-rich diets are the main vehicles of mycotoxin contamination. The aim of this study was to investigate the effects of low ruminal pH on the bioavailability of 4 major mycotoxins [i.e., aflatoxin B1 (AFB1), ochratoxin A (OTA), deoxynivalenol (DON), and fumonisin B1 (FB1)]. Eight nonlactating dairy cows fitted with rumen cannulas were used in a double crossover experiment. The trial was divided into 4 periods with 2 periods per crossover. Cows were divided into 2 groups receiving a low (15% dry matter basis) and high-starch diet (30.8%) with and without live yeast supplementation (1×1010 cfu per cow) in the first and second crossover, respectively. At the end of each period, cows received a single dose of mycotoxin-contaminated feed containing 0.05, 0.2, 0.24, and 0.56mg of AFB1, OTA, DON, and FB1 per kg of feed, respectively. The fecal and urinary excretion of mycotoxins and their metabolites was monitored for up to 48h postdosing. As expected, ruminal pH decreased in cows fed the high-starch diet. The high-starch diet increased the bioavailability of OTA and AFB1. Urinary excretion of OTA 24h after mycotoxin administration increased 3-fold in the high-starch diet, correlated with lower fecal excretion. Similarly, a decrease in fecal excretion of AFB1 was accompanied by an increase in urinary excretion of its major metabolite, aflatoxin M1 , 48h after mycotoxin administration. In contrast to AFB1 and OTA, the bioavailability of DON and FB1 remained unchanged. Yeast supplementation had no effect on the excretion balance of these 2 mycotoxins. In conclusion, these results show that high-starch diets increased the bioavailability of OTA and AFB1, most probably through the lowering effect on ruminal pH. This greater bioavailability potentially increases the toxic effects of these mycotoxins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app