Add like
Add dislike
Add to saved papers

An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app