JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Design, synthesis of methotrexate-diosgenin conjugates and biological evaluation of their effect on methotrexate transport-resistant cells.

Steroids 2016 December
A series of methotrexate-diosgenin conjugates was designed and synthesized to enhance the passive internalization of methotrexate (MTX) into transport-resistant cells. The inhibitory effects of these conjugates on dihydrofolate reductase (DHFR), and their anti-proliferation behaviors against a transport-resistant breast cancer cell line, MDA-MB-231, were investigated. All of the synthesized conjugates retained an ability to inhibit DHFR after the diosgenin substitution. The MTX conjugates were much more potent against methotrexate-resistant MDA-MB-231 cells than MTX. Conjugate 18, containing a disulfide bond, exhibited the most potent anti-proliferative and DHFR inhibitory effects (IC50 =4.1μM and 17.21nM, respectively). Anti-proliferative activity was higher in the conjugate with a longer space linker (conjugate 21) than those with shorter linkers (conjugates 19 and 20). These results suggest that diosgenin conjugation of MTX may be an effective way to overcome its transport resistance in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app