Add like
Add dislike
Add to saved papers

Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs.

Polyglutamine (polyQ) diseases comprise a group of nine genetic disorders that are caused by the expansion of the CAG triplet repeat, which encodes glutamine, in unrelated single genes. Various oligonucleotide (ON)-based therapeutic approaches have been considered for polyQ diseases. The very attractive CAG repeat-targeting strategy offers selective silencing of the mutant allele by directly targeting the mutation site. CAG repeat-targeting miRNA-like siRNAs have been shown to specifically inhibit the mutant gene expression, and their characteristic feature is the formation of mismatches in their interactions with the target site. Here, we designed novel single-stranded siRNAs that contain base substitutions and chemical modifications, in order to develop improved therapeutic tools with universal properties for several polyQ diseases. We tested these ONs in cellular models of Huntington's disease (HD), spinocerebellar ataxia type 3 (SCA3) and dentatorubral-pallidoluysian atrophy (DRPLA). Selected siRNAs caused the efficient and selective downregulation of the mutant huntingtin, ataxin-3 and atrophin-1 levels in cultured human fibroblasts. We also prove the efficiency of novel ONs, with chemical modification pattern mainly containing 2'-fluoro (2'F), in HD mouse striatal cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app