JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Integrated population modeling reveals the impact of climate on the survival of juvenile emperor penguins.

Early-life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture-recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971-1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large-scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app