Add like
Add dislike
Add to saved papers

Effect of static magnetic field on pain level and expression of P2X3 receptors in the trigeminal ganglion in mice following experimental tooth movement.

Bioelectromagnetics 2017 January
Recent research has demonstrated that static magnetic fields (SMF) can generate an analgesic effect in different conditions. The present study explored effects of SMF on pain levels and expressions of P2X3 receptors in trigeminal ganglion (TG) in mice after experimental tooth movement (tooth movement induced by springs between teeth). Experiments were performed in male mice (body mass: 25-30 g) and divided into SMF + force group, force group, and no force group. Exposure time was over 22 h per day. Mouse Grimace Scale was used for evaluating orofacial pain levels during experimental tooth movement at 4 h and 1, 3, 7, and 14 days. Meanwhile, expression levels of P2X3 receptors in the TG were evaluated by immunohistochemistry and western blotting at same time points. We finally found that during experimental tooth movement, pain levels of mice peaked at 3 days, and then decreased. While pain levels of mice were reduced in the SMF environment at 4 h, 1 and 3 days, there was a significant difference at 1 and 3 days. Meanwhile, under the action of SMF, expression levels of P2X3 receptors in TG were significantly lower at 4 h, 3 and 7 days. These results suggest that SMF can reduce pain levels in mice, and down-regulate P2X3 receptors in TG. Bioelectromagnetics. 38:22-30, 2017. © 2016 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app