Add like
Add dislike
Add to saved papers

Determination of 8-Hydroxydeoxyguanosine: A potential biomarker of oxidative stress, using carbon-allotropic nanomaterials modified glassy carbon sensor.

Talanta 2016 December 2
A voltammetric sensor for the determination of 8-Hydroxydeoxyguanosine (8-OHdG); an important, sensitive and integral biomarker of oxidative stress and related pathological conditions like carcinogenesis, renal disorders, mental retardations, diabetes etc. has been fabricated. The synergistic behavior of two allotropic forms of carbon, which are electrochemically reduced graphene oxide (ErGO) and multiwalled carbon nanotubes (MWCNTs), has been exploited for the surface modification. The resulting modified surface has been characterized using Field Emission Scanning Electron Microscopy, X-ray diffraction, Electrochemical Impedance Spectroscopy and voltammetric behavior. The fabricated sensor exhibited excellent electrocatalytic effect towards oxidation of 8-OHdG and also showed substantial increment in sensitivity. The modified sensor showed a sensitivity of 0.1965µA/µM in the linear range of 3-75µM, whereas, a slope of 0.0046µA/µM was obtained for unmodified GCE. A limit of detection as low as 35nM has been obtained using the glassy carbon surface modified sensor. The proposed method was also successfully applied for the quantification of 8-OHdG in the presence of common interfering biomolecules like ascorbic acid, uric acid, xanthine, hypoxanthine etc. and also in human urine samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app